

Microbes of Potential Concern in Distribution System Biofilms

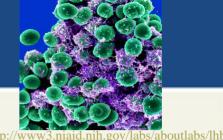
Kellogg J. Schwab Ph.D.

Johns Hopkins Bloomberg School of Public Health

Department of Environmental Health Sciences

Microorganisms of public health concerning Biofilms

- It is not just bacteria
 - Viruses, protozoa and fungi can contribute to morbidity and mortality
- Immune status is important
 - Immunocompromised individuals have increased susceptibility to infection
 - An opportunistic pathogen is one that usually causes disease only in those whose immune system is compromised


Immune status

- A weakened immune system may be due to:
 - Very young or old age
 - By 2030, nearly 20% of the total U.S. population will be over 65 years of age
 - Cancer therapy
 - the number of persons living with cancer has tripled
 - 3.0 million in 1971
 - 9.8 million in 2001
 - Many are on immunosuppressive medications
 - Pregnancy 6 million
 - Chronic illness
 - Diabetes 16 million (~6 % of US population)
 - Cardiovascular disease 60 million (~22% of US population)
 - Human immunodeficiency virus
 - Over 400,000 individuals in the US are living with AIDS

Bacteria of Health Concern

- Opportunistic bacterial pathogens
 - Legionella spp.
 - Mycobacteria spp.
 - Pseudomonas spp.
 - Aeromonas spp.
- Primary bacterial pathogens
 - Campylobacter spp.
 - Enterohemorrhagic E. coli
 - Salmonella typhimurium
 - Shigella
 - Yersinia
 - Helicobacter pylori

Bacteria in Biofilms

Biofilms are remarkably difficult to treat with antimicrobials.

pathogenMolecularGeneticsSection/

- Antimicrobials may be readily inactivated or fail to penetrate into the biofilm
- bacteria within biofilms have increased (up to 1000-fold higher) resistance to antimicrobial compounds
 - even though these same bacteria are sensitive to these agents if grown under planktonic conditions
- Biofilms increase the opportunity for gene transfer between/among bacteria
- · Certain species of bacteria communicate with each other within the biofilm.
 - As their density increases, the organisms secrete low molecular weight molecules that signal when the population has reached a critical threshold. This process, called quorum sensing, is responsible for the expression of virulence factors
- Bacteria express new, and sometimes more virulent phenotypes when growing within a biofilm.
- Bacteria embedded within biofilms are resistant to both immunological and nonspecific defense mechanisms of the body

Legionella - An important biofilm bacteria

- At least 46 species and 70 serogroups have been identified.
 - Legionella pneumophila, an ubiquitous aquatic Gram-negative bacteria that thrives in warm environments (32°- 45°C)
 - causes over 90% of legionnaires' disease (LD) in the United States.
- LD is the more severe form of legionellosis
 - characterized by pneumonia commencing 2-10 days after exposure.
- Pontiac fever is an acute-onset, flu-like, nonpneumonic illness, occurring within a few hours to two days of exposure.

http://www.nrc-cnrc.gc.ca/education/bio/gallerylegionella e.html

Legionella Transmission

- Person-to-person transmission has not been reported to occur
- Inhalation of contaminated aerosols
 - cooling towers,
 - showers and faucets
 - aspiration of contaminated water
- Legionnaire's disease is an acute respiratory infection which can cause a broad spectrum of symptoms from mild cough and fever to a serious pneumonia

Legionella Incidence

- An estimated 8,000-18,000 cases of Legionella occur each year in the United States, but because of under-diagnosis and underreporting, only 2 to 10% of estimated cases are identified.
 - Most legionnaires' disease cases are sporadic;
 - 20-25% are nosocomial
 - 10%-20% can be linked to outbreaks.
 - Pontiac fever has been recognized only during outbreaks.
- Death occurs in 10%-15% of legionnaires' disease cases:
 - a substantially higher proportion of fatal cases occur during nosocomial outbreaks.
 - Pontiac fever is a self-limited disease that requires no treatment.

Free-living Protozoa

- Amoebae and Acanthamoebae
 - Intracellular replication of L. pneumophila within protozoa play a major role in the transmission of Legionnaires' disease.
 - Protozoa provide habitats for Legionella environmental survival and replication
 - Other opportunistic pathogens can also be associated with free-living protozoa
 - Mycobacterium spp., Pseudomonas spp., Burkhoderia spp., Aeromonas spp., H. pylori etc

Mycobacterium avium Complex (MAC)

- MAC consists of 28 serovars of two distinct species:
 - Mycobacterium avium
 - Mycobacterium intracellulare
- Exposure to MAC organisms may occur through
 - contact with or ingestion, aspiration, or aerosolization of potable water containing the organisms.
 - inhalation of air with contaminated soil particles
 - consumption of contaminated food

- The clinical presentation of MAC infections can include a productive cough, fatigue, fever, weight loss, and night sweats
- The symptoms encountered with MAC infections result from colonization of either the respiratory or the gastrointestinal tract, with possible dissemination to other locations in the body.

- Disseminated infections are usually associated with HIV infection.
 - Incidence is decreasing among
 HIV- infected patients as a result of new treatment modalities
 - combination therapy with nucleoside reverse transcriptase inhibitors and protease inhibitors
 - antimycobacterial prophylaxis

http://www.md.huji.ac.il/mirror/webpath/AIDS039.jpg

MAC involving spleen

- M. avium can infect individuals with chronic lung conditions
 - bronchiectasis, emphysema and cystic fibrosis
- Lung disease secondary to aerosolized MAC from hot tubs has recently been described in young, immunocompetent individuals.

 Unlike gastrointestinal pathogens, where fecal indicators such as *E. coli* can be used to indicate their potential presence, no suitable indicators have been identified to signal increasing concentrations of MAC organisms in water systems.

Pseudomonas spp

@ 2004 Dennis Kunkel Microscopy, Inc.

http://www.ehagroup.com/epidemiology/

illnesses/images/pseudomonas-aeruginosa.jpg

- Pseudomonas aeruginosa is common in soil, water, and vegetation.
- It is found on the skin of healthy individuals and has been isolated from the throat (5%) and stool (3%) of nonhospitalized patients.
- The gastrointestinal carriage rates increase in hospitalized patients to 20% within 72 hours of admission.

Pseudomonas spp.

- Pseudomonas aeruginosa is an opportunistic pathogen
 - respiratory system infections
 - urinary tract infections,
 - Dermatitis & soft tissue infections
 - bacteremia
 - bone and joint infections
 - gastrointestinal infections
- Pseudomonas aeruginosa infection is a serious problem in patients hospitalized with cancer, cystic fibrosis, and burns.
 The case fatality rate in these patients is 50%
- Many Pseudomona spp. are resistant to multiple antibiotics

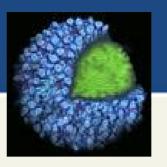
http://www.microbes-edu.org/
etudiant/imgbgn/pyomain.jpg

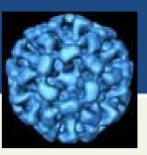
Aeromonas spp.

- The species principally associated with gastroenteritis are
 - A. caviae, A.hydrophila, and A. veronii
- Aeromonads have been commonly isolated from patients with gastroenteritis although their role in disease causation remains unclear.
 - They are also associated with
 - sepsis and wounds
 - eye, respiratory tract, and other systemic infections
- The pathogenesis of Aeromonas infections remains poorly understood
 - They express a range of virulence factors, including attachment mechanisms and produce of a number of toxins.

Primary Bacterial Pathogens

- Many enteric bacteria have the potential to attach to biofilms where they can aggregate and be protected from disinfection.
 - Campylobacter spp.
 - Enterohemorrhagic E. coli
 - Salmonella typhimurium
 - Shigella
 - Yersinia
 - Helicobacter pylori

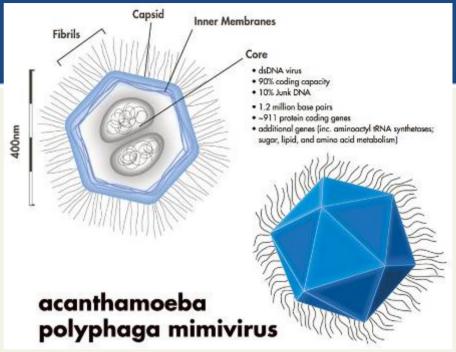

Enteric Viruses


- Transmitted via fecal-oral route predominantly from human waste
- Viruses cannot replicate outside of specific hosts thus they can accumulate but not grow in a biofilm
 - Protection from disinfectants
 - Aggregation of virus
- Enteric viruses are non-enveloped and thus resistant to environmental degradation and chemical inactivation
 - Persist for weeks to months in cool aqueous environments
- The infectious dose for most human enteric viruses is very low (10-100 particles) and thus even very low levels are of public health concern
- There is minimal to no correlation between bacterial indicators and viruses in potable water

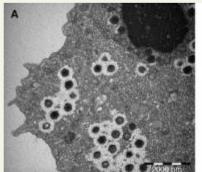
Enteric Viruses of Public Health Concern

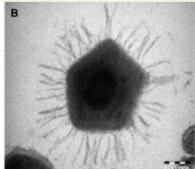
- Calicivirus
 - Norovirus and Sapovirus
- Hepatitis A virus
- Adenovirus
- Rotavirus
- Coxsackievirus
- Echovirus
- Astrovirus

Norovirus (NoV)



- A genus in Caliciviridae family
 - Genetically diverse >150 strains
- The single most important cause of nonbacterial gastroenteritis in US and throughout the world
 - 23 million cases per year in US
- Small round structure, 27-30 nm dia.
- Non-enveloped protein capsid, positive sense single strand RNA genome
- Causes self-limiting intestinal illness
 - Major concern in nosocomial settings


Mimivirus

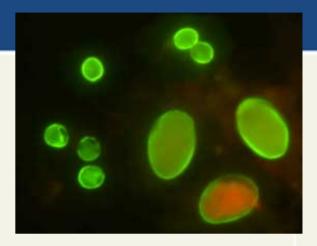

- Mimivirus

 (Acanthamoeba polyphaga)
 - Mimivirus may be a causative agent of some forms of pneumonia

http://en.wikipedia.org/wiki/Image:Mimivirus.jpg

http://www.stanford.edu/group/virus/mimi/2005/mimipic1.jpg

Primary Protozoa

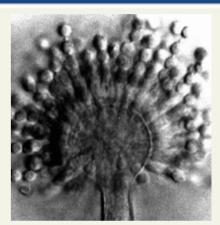

- Like viruses most primary protozoal pathogens cannot replicate outside of specific hosts thus they can accumulate but not grow in a biofilm
 - Present in water in a non-reproductive protective stage (e.g. cyst, oocyst)
- Human pathogenic protozoa are resistant to environmental degradation and chemical inactivation
 - Persist for months in cool aqueous environments
- The infectious dose for most human enteric protozoa is very low (10s-100s of (oo)cysts) and thus even very low levels are of public health concern
- There is minimal to no correlation between bacterial indicators and protozoa in potable water

Protozoa of Public Health Concern

- Cryptosporidium
- Giardia
- Microsporidia
- Toxoplasma gondii
- Cyclospora
- Entamoeba
- Acanthamoeba
- Naegleria

Cryptosporidium

- Oocysts are very infectious
 - Infectious dose 10s to 100s
- 3-11 day incubation (average is 7 days)
- May result in asymptomatic carriage
- Self-limiting in healthy individuals
 - Watery diarrhea without blood
 - Illness lasts 10-14 days
- Immunocompromised patients
 - >50 stools/day with tremendous fluid loss
 - Can be severe and last for months
 - 10-15% of AIDS patients die of complications related to cryptosporidiosis



Fungi

- Fungi are classified as
 - Molds branching, threadlike filaments
 - Yeasts single-celled organisms that reproduce by budding
- Fungi are ubiquitous in the environment and have been found in water distribution systems
 - Opportunistic and infrequently cause illness
 - Several spp. can produce toxins

Fungi

- · Aspergillus spp.
 - A. fumigatus; A. flavus; A. niger
 - Pulmonary disease
- Cryptococcus neoformans
 - Lung infections, meningitis

http://www.pall.com/images/flavcf.gif

- Candida albicans
 - Vaginal, urinary and esophageal infections
- Stachybotrys chartarum
 - Pulmonary disease

Detection Strategies

- Many bacteria can enter a viable but not cultivable (VBNC) state making culture analysis challenging
- Culture analysis reflective of infectivity
 - Risk to public health
- Molecular techniques are sensitive and specific but most do not provide information on the infectious nature of the detected microorganism

Control of Microorganisms of Public Health Concern in Biofilms

- The number of immunosuppressed individuals is increasing
 - Increased health risks due to opportunistic pathogens
- Microorganisms other than bacteria are important public health risks
 - Viruses, protozoa, fungi
- Control of microbial contamination requires maintenance of a constant disinfectant residual throughout the water system.
- Treatment strategies targeting free-living amoebae should lead to improved control of *L. pneumophila* and other pathogens.
- Biofilms are unique environments that will continue to be a challenge for the water industry